



# Integrating the NeXOS Sensors Into Fixed and Mobile Platforms

#### **Key Project Milestones**

Laboratory Tests Jan. 2016
Field Validation Tests Feb. 2017
Demonstrations June 2017



**BIOACOUSTICS AND NOISE** 



GLIDERS



WAVE GLIDER















Transition from sensor prototypes to commercial production— Our small and medium-sized enterprise's path to the future.

INTEGRATIVE SCENARIOS

Hydrocarbon observations with gliders

Observations for sustainable fisheries

taking place

blooms

Mediterranean

Atlantic

Norway

Characterising the underwater soundscape,

with a focus on areas where human activities are

• Carbon sequestration observation with Ferrybox

Detection and characterization of phytoplankton

**DEMONSTRATION LOCATIONS** 





# Multifunctional Web Enabled Sensors for the Monitoring of a Changing Ocean



- Lower Capital and Operating Expenses for Observing Systems
- Multifunctional Sensor Packages Configured for Multiple Platforms
- Standard Web Interfaces
- Extended Deployment Duration

### **NeXOS Innovative Technologies Improve End-to-End Ocean Information for Users**



### **Compact/Cost-efficient Sensors**

- Optical sensors for greenhouse gases, contaminants, and phytoplankton
- Passive acoustic sensors for noise/bioacoustics
- New robust EAF sensors



#### **Effortless Information Access**

- Smart sensor interface and web components
- Plug and play sensors
- Real-time standard Web Services
- End-to-end operable chain



### **Reliability and Availablility**

- Biofouling prevention
- Detection of the earliest stage of biological growth on sensor surface
- Conductive coating on the transducing interface of the sensor
- Instrument with coated biofouling protection operates since Sept 2014

For more information, please visit **www.nexosproject.eu** or contact NeXOS Coordinator, Eric Delory at: info@nexosproject.eu





# NeXOS — New Innovative and Multifunctional Optical, Acoustic and Fisheries Management Sensors **Configured for Implementation on Multiple Cost-Effective Platforms**

PASSIVE ACOUSTICS

PASSIVE ACOUSTICS

**FISHERIES** 

# **O1. Hydrocarbons & Fluorescent Dissolved Organic Matters**

(O1-MatrixFlu and O1-Mini-Fluo)



**UV-Version** PAH monitoring, FDOM classification

Vis-Version Algae, FDOM Turbidity Monitor



Glider Test for Mini-Fluo (FDOM Phenantrene)

## 02. Phytoplankton Id

(HyAbs/Oscar G2)



Flow-through hyperspectral cavity absorption sensor system Reliable identification of at least 7 phytoplankton groups



### **O3. Carbon Sensor System**

Measure Carbon cycle relevant parameters such as pH, CO2, and alkalinity using photochemical reactions; 3 pH/PCO2 sensor configurations for ferry box & sail-buoy





#### Optical Sensor Fusion Processor

### A1 — Digital Hydrophone with Embedded Preprocessing





Compact, low power for autonomous and mobile platforms Embedded pre-processing of acoustic data; OGC PUCK & SWE enabled

Measures bioacoustics and ambient noise characteristics

### A2— Volumetric Hydrophone System

Array of 4 A1 with Ethernet interfaces and 1 master synchronization unit

Capable of providing directional sound source information

Real-time waveform streaming aimed at platforms with higher power and communication capabilities Reprogrammable, open source Deep water capable Choose RS232 or Ethernet connectivity

### Two New NeXOS RECOPESCA Sensors



Net mounted Oxygen and fluorescence (chlorophyll-a) sensor probes for an Ecosystem Approach to Fisheries (EAF) Development of fluorescence probe for temperature and pressure measurements "STPFlu"















































